Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels

Jiyan Yang

Stanford University

June 24th, 2014

ICML, 2014, Beijing Joint work with Vikas Sindhwani, Haim Avron and Michael Mahoney Brief Overview of Kernel Methods

Low-dimensional Explicit Feature Map

Quasi-Monte Carlo Random Feature

Empirical Results

Brief Overview of Kernel Methods

Low-dimensional Explicit Feature Map

Quasi-Monte Carlo Random Feature

Problem setting

We will start with the kernelized ridge regression problem,

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2 + \lambda \|f\|_{\mathcal{H}}^2.$$
 (1)

where $\mathbf{x}_i \in \mathbb{R}^d$, \mathcal{H} is a nice hypothesis space (RKHS) and ℓ is a convex loss function.

- A symmetric and positive-definite kernel $k(\mathbf{x}, \mathbf{y})$ generates a unique RKHS \mathcal{H} .
- ► For example, RBF kernel, $k(\mathbf{x}, \mathbf{y}) = e^{-\frac{\|\mathbf{x} \mathbf{y}\|^2}{2\sigma^2}}$.
- Kernel methods are widely used in solving regression, classification or inverse problems raised in many areas as well as unsupervised learning problems.

Scalability

▶ By the Representer Theorem, the minimizer of (1) can be represented by

$$c = (K + \lambda nI)^{-1}Y.$$

- Above the Gram matrix K is defined as $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$. Forming $n \times n$ matrix K needs $\mathcal{O}(n^2)$ storage and typical linear algebra needs $\mathcal{O}(n^3)$ running time.
- ▶ This is an $n \times n$ dense linear system which is not scalable for large n.

Linear kernel and explicit feature maps

- ▶ Suppose we can find a feature map $\Psi : \mathcal{X} \to \mathbb{R}^s$ such that $k(\mathbf{x}, \mathbf{y}) = \mathbf{z}(\mathbf{x})^T \mathbf{z}(\mathbf{y})$. Then the Gram matrix $K = ZZ^T$, where the *i*-th row of Z is $\mathbf{z}(\mathbf{x}_i)$ and $Z \in \mathbb{R}^{n \times s}$.
- ▶ The solution to (1) can be expressed as

$$w = (Z^T Z + \lambda n I)^{-1} Z^T Y.$$

- ▶ This is an $s \times s$ linear system.
- ▶ It is attractive if *s* < *n*.
- ▶ Testing times reduces from $\mathcal{O}(nd)$ to $\mathcal{O}(s+d)$.

Brief Overview of Kernel Methods

Low-dimensional Explicit Feature Map

Quasi-Monte Carlo Random Feature

Mercer's Theorem and explicit feature map

Theorem (Mercer)

For any positive definite kernel k, it can be expanded into

$$k(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{N_F} \lambda_i \phi_i(\mathbf{x}) \phi_i(\mathbf{y}).$$

- ► Can define $\Phi(\mathbf{x}) = (\sqrt{\lambda_1}\phi_1(\mathbf{x}), \dots, \sqrt{\lambda_{N_F}}\phi_{N_F}(\mathbf{x})).$
- ▶ For many kernels, such as RBF, $N_F = \infty$.
- ▶ **Goal**: Find explicit feature map $\mathbf{z}(\mathbf{x}) \in \mathbb{R}^s$ such that

$$k(\mathbf{x}, \mathbf{y}) \simeq \mathbf{z}(\mathbf{x})^T \mathbf{z}(\mathbf{y}),$$

where s < n. Then $K \simeq ZZ^T$.

Bochner's Theorem

Theorem (Bochner)

A continuous kernel $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} - \mathbf{y})$ on \mathbb{R}^d is positive definite if and only if $k(\mathbf{x} - \mathbf{y})$ is the Fourier transform of a non-negative measure.

A Monte Carlo Approximation

 \blacktriangleright More specifically, given a shift-invariant kernel k, we have

$$k(\mathbf{x}, \mathbf{y}) = k(\mathbf{x} - \mathbf{y}) = \int_{\mathbb{R}^d} e^{-i\mathbf{w}^T(\mathbf{x} - \mathbf{y})} p(\mathbf{w}) d\mathbf{w}.$$

 By standard Monte Carlo (MC) approach, the above can be approximated by

$$\tilde{k}(\mathbf{x}, \mathbf{y}) = \frac{1}{s} \sum_{j=1}^{s} e^{-i\mathbf{w}_{j}^{T}(\mathbf{x} - \mathbf{y})}, \tag{2}$$

where \mathbf{w}_j are drawn from $p(\mathbf{w})$.

Random Fourier feature

▶ The random Fourier feature map can be defined as

$$\psi(\mathbf{x}) = \frac{1}{\sqrt{s}}(g_{\mathbf{w}_1}(\mathbf{x}), \dots, g_{\mathbf{w}_s}(\mathbf{x})),$$

where $g_{\mathbf{w}_i}(\mathbf{x}) = e^{-i\mathbf{w}_i^T\mathbf{x}}$. [Rahimi and Recht 07].

So

$$\tilde{k}(\mathbf{x}, \mathbf{y}) = \frac{1}{s} \sum_{j=1}^{s} e^{-i\mathbf{w}_{j}^{T}(\mathbf{x} - \mathbf{y})} = \psi(\mathbf{x})^{T} \bar{\psi}(\mathbf{y}).$$

Motivation

- ▶ We want to use less random features while maintaining the same approximation accuracy.
- ▶ MC method has a convergence rate of $\mathcal{O}(1/\sqrt{s})$.
- ▶ To gain a faster convergence, quasi-Monte Carlo method will be a better choice since it has a convergence rate of $\mathcal{O}((\log s)^d/s)$.

Brief Overview of Kernel Methods

Low-dimensional Explicit Feature Map

Quasi-Monte Carlo Random Feature

Quasi-Monte Carlo method

Goal

To approximate an integral over the d-dimensional unit cube $[0,1]^d$,

$$I_d(f) = \int_{[0,1]^d} f(x) dx_1 \cdots dx_d.$$

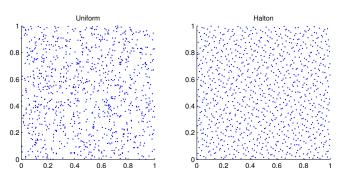
Quasi-Monte Carlo methods usually take the following form,

$$Q_s(f) = \frac{1}{s} \sum_{i=1}^s f(t_i),$$

where $t_1, \ldots, t_s \in [0, 1]^d$ are pseudo-random points chosen deterministically with low-discrepancy.

Low-discrepancy sequences

- Many pseudo-random sequences $\{\mathbf{t}_i\}_{i=1}^{\infty}$ with low-discrepancy are available, such as Halton sequence and Sobol' sequence.
- ► They tend to be more "uniform" than sequence drawn uniformly.
- Notice the clumping and the space with no points in the left subplot.



Quasi-random features

▶ By setting $\mathbf{w} = \Phi^{-1}(\mathbf{t})$, $k(\mathbf{x}, \mathbf{y})$ can be rewritten as

$$\int_{\mathbb{R}^d} e^{-i(\mathbf{x}-\mathbf{y})^T \mathbf{w}} p(\mathbf{w}) d\mathbf{w} = \int_{[0,1]^d} e^{-i(\mathbf{x}-\mathbf{y})^T \Phi^{-1}(\mathbf{t})} d\mathbf{t}$$

$$\approx \frac{1}{s} \sum_{j=1}^s e^{-i(\mathbf{x}-\mathbf{y})^T \Phi^{-1}(\mathbf{t}_j)} . \quad (3)$$

After generating the low discrepancy sequence $\{\mathbf{t}_j\}_{j=1}^s$, the quasi-random features can be represented by $\frac{1}{s}\sum_{j=1}^s g_{\mathbf{t}_i}(\mathbf{x})$, where

$$g_{\mathbf{t}_j}(\mathbf{x}) = e^{-i\mathbf{x}^T\Phi^{-1}(\mathbf{t}_j)}.$$

Algorithm: Quasi-Random Fourier Features

Input: Shift-invariant kernel k, size s.

Output: Feature map $\hat{\Psi}(\mathbf{x}): \mathbb{R}^d \mapsto \mathbb{C}^s$.

1: Find p, the inverse Fourier transform of k.

2: Generate a low discrepancy sequence $\mathbf{t}_1, \dots, \mathbf{t}_s$.

3: Transform the sequence: $\mathbf{w}_j = \Phi^{-1}(\mathbf{t}_j)$.

4: Set $\hat{\Psi}(\mathbf{x}) = \sqrt{\frac{1}{s}} \left[e^{-i\mathbf{x}^T \mathbf{w}_1}, \dots, e^{-i\mathbf{x}^T \mathbf{w}_s} \right]$.

Quality of Approximation

▶ Given a pair of points x, y, let u = x - y. The approximation error is

$$\epsilon[f_{\mathbf{u}}] = \int_{\mathbb{R}^d} f_{\mathbf{u}}(\mathbf{w}) p(\mathbf{w}) d\mathbf{w} - \frac{1}{s} \sum_{i=1}^s f_{\mathbf{u}}(\mathbf{w}_i),$$

where $f_{\mathbf{u}}(\mathbf{w}) = e^{i\mathbf{u}^T\mathbf{w}}$.

- ▶ Want to characterize the behavior of $\epsilon[f_{\mathbf{u}}]$ when $u \in \bar{\mathcal{X}}$ and $\bar{\mathcal{X}} = \{\mathbf{x} \mathbf{z} | \mathbf{x}, \mathbf{z} \in \mathcal{X}\}.$
- Consider a broader class of integrands,

$$\mathcal{F}_{\Box \mathbf{b}} = \{ f_{\mathbf{u}} | \mathbf{u} \in \Box \mathbf{b} \}.$$

Here $\Box \mathbf{b} = \{ \mathbf{u} \in \mathbb{R}^d \mid |u_j| \leq b_j \}$ and $\bar{\mathcal{X}} \in \Box \mathbf{b}$.

Main Theoretical Result

Theorem (Average Case Error)

Let $\mathcal{U}(\mathcal{F}_{\Box \mathbf{b}})$ denote the uniform distribution on $\mathcal{F}_{\Box \mathbf{b}}$. That is, $f \sim \mathcal{U}(\mathcal{F}_{\Box \mathbf{b}})$ denotes $f = f_{\mathbf{u}}$ where $f_{\mathbf{u}}(\mathbf{x}) = e^{-i\mathbf{u}^T\mathbf{x}}$ and \mathbf{u} is randomly drawn from a uniform distribution on $\Box \mathbf{b}$. We have,

$$\mathbb{E}_{f \sim \mathcal{U}(\mathcal{F}_{\square \mathbf{b}})} \left[\epsilon_{S,p}[f]^2 \right] = \frac{\pi^d}{\prod_{j=1}^d b_j} D_p^{\square \mathbf{b}}(S)^2 .$$

Box discrepancy

Suppose that $p(\cdot)$ is a probability density function, and that we can write $p(\mathbf{x}) = \prod_{j=1}^d p_j(x_j)$ where each $p_j(\cdot)$ is a univariate probability density function as well. Let $\phi_j(\cdot)$ be the characteristic function associated with $p_j(\cdot)$. Then,

$$D_{\text{sinc}_{\mathbf{b}},p}(S)^{2} = (\pi)^{-d} \prod_{j=1}^{d} \int_{-b_{j}}^{b_{j}} |\phi_{j}(\beta)|^{2} d\beta - \frac{2(2\pi)^{-d}}{s} \sum_{l=1}^{s} \prod_{j=1}^{d} \int_{-b_{j}}^{b_{j}} \phi_{j}(\beta) e^{iw_{lj}\beta} d\beta + \frac{1}{s^{2}} \sum_{l=1}^{s} \sum_{i=1}^{s} \operatorname{sinc}_{\mathbf{b}}(\mathbf{w}_{l}, \mathbf{w}_{j}) .$$

$$(4)$$

Proof techniques

- Consider integrands to be in some Reproducing Kernel Hilbert Space (RKHS). Uniform bound for approximating error can be derived by standard arguments.
- ▶ Here we consider the space of functions that admit an integral representation over $\mathcal{F}_{\square b}$ of the form,

$$f(\mathbf{x}) = \int_{\mathbf{u} \in \Box \mathbf{b}} \hat{f}(\mathbf{u}) e^{-i\mathbf{u}^T \mathbf{x}} d\mathbf{u} \text{ where } \hat{f}(\mathbf{u}) \in L_2(\Box \mathbf{b}) . \tag{5}$$

These spaces are called *Paley-Wiener spaces* PW_b and they constitute a RKHS.

▶ The damped approximations of the integrands in $\mathcal{F}_{\Box \mathbf{b}}$ of form $\tilde{f}_{\mathbf{u}}(\mathbf{x}) = e^{-i\mathbf{u}^T\mathbf{x}}\operatorname{sinc}(T\mathbf{x})$ are members of $PW_{\mathbf{b}}$ with $\|\tilde{f}\|_{PW_{\mathbf{b}}} = \frac{1}{\sqrt{T}}$. Hence, we expect $D_p^{\Box \mathbf{b}}$ to provide a discrepancy measure for integrating functions in $\mathcal{F}_{\Box \mathbf{b}}$.

Brief Overview of Kernel Methods

Low-dimensional Explicit Feature Map

Quasi-Monte Carlo Random Feature

Approximation error on Gram matrix

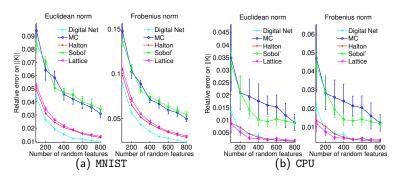


Figure : Relative error on approximating the Gram matrix measured in Euclidean norm and Frobenius norm, i.e. $\|\mathbf{K} - \tilde{\mathbf{K}}\|_2 / \|\mathbf{K}\|_2$ and $\|\mathbf{K} - \tilde{\mathbf{K}}\|_F / \|\mathbf{K}\|_F$, for various s. For each kind of random feature and s, 10 independent trials are executed, and the mean and standard deviation are plotted.

Generalization error

	s	Halton	Sobol,	LATTICE	Digit	MC
CPU	100	0.0367	0.0383	0.0374	0.0376	0.0383
		(0)	(0.0015)	(0.0010)	(0.0010)	(0.0013)
	500	0.0339	0.0344	0.0348	0.0343	0.0349
		(0)	(0.0005)	(0.0007)	(0.0005)	(0.0009)
	1000	0.0334	0.0339	0.0337	0.0335	0.0338
		(0)	(0.0007)	(0.0004)	(0.0003)	(0.0005)
CENSUS	400	0.0529	0.0747	0.0801	0.0755	0.0791
		(0)	(0.0138)	(0.0206)	(0.0080)	(0.0180)
	1200	0.0553	0.0588	0.0694	0.0587	0.0670
		(0)	(0.0080)	(0.0188)	(0.0067)	(0.0078)
	1800	0.0498	0.0613	0.0608	0.0583	0.0600
		(0)	(0.0084)	(0.0129)	(0.0100)	(0.0113)

Table : Regression error, i.e. $\|\hat{\mathbf{y}} - \mathbf{y}\|_2 / \|\mathbf{y}\|_2$ where $\hat{\mathbf{y}}$ is the predicted value and \mathbf{y} is the ground truth.

Evaluation of box discrepancy

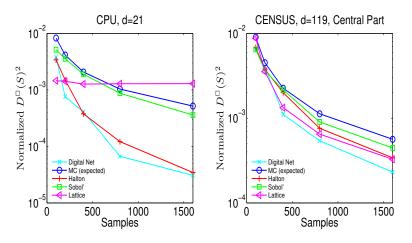


Figure : Discrepancy values (D^{\square}) for the different sequences on cpu and census. For census we measure the discrepancy on the central part of the bounding box (we use $\square \mathbf{b}/2$ in the optimization instead of $\square \mathbf{b}$).

Adaptively learning low-discrepancy sequence

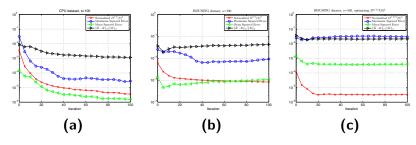


Figure: Examining the behavior of learning *Global Adaptive* sequences. Various metrics on the Gram matrix approximation are plotted.

Generalization error

	s	HALTON	$\mathrm{Global}_{\boldsymbol{b}}$	$\mathrm{Global}_{\mathbf{b}/4}$	$\mathrm{Greedy}_{\boldsymbol{b}}$	$\text{Greedy}_{\mathbf{b}/4}$
CPU	100	0.0304	0.0315	0.0296	0.0307	0.0296
	300	0.0303	0.0278	0.0293	0.0274	0.0269
	500	0.0348	0.0347	0.0348	0.0328	0.0291
CENSUS	400	0.0529	0.1034	0.0997	0.0598	0.0655
	800	0.0545	0.0702	0.0581	0.0522	0.0501
	1200	0.0553	0.0639	0.0481	0.0525	0.0498
	1800	0.0498	0.0568	0.0476	0.0685	0.0548
	2200	0.0519	0.0487	0.0515	0.0694	0.0504

Table : Regression error, i.e. $\|\hat{\mathbf{y}} - \mathbf{y}\|_2 / \|\mathbf{y}\|_2$ where $\hat{\mathbf{y}}$ is the predicted value and \mathbf{y} is the ground truth.